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FOREWORD

This training document was written to assist users of computer pro-

gram HEC-2, Water Surface Profiles, in calculating water surface profiles

through bridges. Financial assistance for writing this document was pro-
vided by the Flood Plain Management Branch, Office of the Chief of Engi-
neers. Computer program HEC-2 was written by Bill S. Eichert. Portions
of previous HEC publications have been used in this training document.
The author wishes to acknowledge contributions by Mr. John C. Peters
and Mr. Bi11 S. Eichert to the material contained in this document and

for their reviews and comments.
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APPLICATION OF THE HEC-2 BRIDGE ROUTINES

by

Vernon R. Bonner*

INTRODUCTION

The purpose of this document is to assist the HEC-2 program user
in preparing input for the bridge routines. An understanding of the
basic program input requirements is assumed. General information on
the program is provided in the "HEC-2 Water Surface Profiles - Users
Manual" (reference f). This training document provides a review of
the computational methods available in the program and guidelines on
how to code the necessary data. Examples of input preparation are
provided and the program solutions for tne example problems are attached
in the appendices. Suggested approaches for some typical bridge problems

are.also.preseated.

*Hydraulic Engineer, The Hydrqlogic Engineering Center, Davis, CA
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METHODS AVAILABLE IN HEC-2

The program computes the energy loss caused by structures such as
bridges and culverts in two parts. One part consists of the losses
that occur in reaches immediately upstream and downstream from the bridge
where contraction and expansion of the flow is taking place. The second
part consists of losses at the structure itself. As an alternative to
having the pregram compute the losses, it is possible to input a loss

(or water surface elevation) determined externally from the program.

Contraction & Expansion Losses

Losses due to contraction and expansion of flow between cross sec-

tions are determined by standard step profile calculations. Manning's
equation is used to calculate friction losses, and 211 other lJosses are
described in terms of a coefficient times the absolute value of the change
in velocity head between adjacent cross sections. When the velocity head
increases in the downstream direction, a2 contraction coefficient is used;
and when the velocity head decreases, an expansion coefficient is used.
The second part of the loss calculation, for losses that occur
at the structure itself, is made by either the normal bridge routine

or the special bridge routine.

Normal Bridge Routine

The normal bridge routine handles a bridge cross section in the

same manner as a natural river cross section, except that the area of the




'
|

y{
3
|
5

bridge below the water surface is subtracted from the total area, and

the wetted perimeter is increased where the water is in contact with

the bridge structure. The bridge deck is described either by entering
the constant elevations of the top of roadway and low chord as varfa-
bles ELTRD and ELLC respectively on card X2, or by specifying a table .
of roadway stations and elevations, and corresponding low chord eleva- -
tions, on BT cards. When only ELLC and ELTRD are used, these elevations
are extended horizontally until they intersect the ground line defined

on GR cards. Pier losses are accounted for by the loss of area and the
increased wetted perimeter of the piers as described in terms of cross

section coordinates, usually on the GR card.

Special Bridge Routine

The special bridge routine computes losses through the structure
for either low flow, pressure flow, weir flow, or for a combination of .
these. The profile through the bridge is calculated using hydraulic
formulas to determine the change in energy and water surface elevation
through the bridge.

Low Flow. The procedure used for low flow calculations in the spe-
cial bridge routine depends on whether the bridge has piers. Without
plers, tha low flow solution is accomplished by standard step calcula-
tions in the normal bridge routine. The transfer to the normal bridge
routine fs necessary because the equations used in the special bridge

routine for low flow are based on the obstruction width due to the piers.




Without piers, the special bridge solution would indicate that no losses
would occur. For a bridge with piers, the program goes through a momen-
tum balance for cross sections just outside and inside the bridge to
determine the class of flow. The momentum calculations are handled by
employing the following momentum relations based on the equations proposed
by Koch and Carstanjen (references b and c).

2 C 92 g4'2
—D = = -
e T Ig_(A!l)z ( - 2 Apl) m, + %, mg = Moz * *,
where,

Mys My, Ry <® Alil. Aziz and A3§3. respectively

oye M3 T Aplypl and Ap3yp3' respectively

Ay A3 = unobstructed (gross) area at upstream and downstream
sections, respectively
A, = flow area (gross area - area of piers) at a section

within constricted reach

Apl' Ap3 = obstructed areas at upstream and downstream sections,
respectively

vertical distance from water surface to center of
gravity of A]. A, A3. respectively

s Ip0 ¥y
CD = drag coefficient equal to 2 for square pier ends

and 1.33 for piers with semicircular ends.

ypl’ ipz = vertical distance from water surface to center of ;
gravity of Apl and Ap3. respectively I

Q = discharge R

g = gravitational acceleration




The three parts of the momentum equation represent the total mo-
mentum flux in the constriction expressed in terms of the channel pro-
perties and flow depths upstream, within and downstream of the con-
stricted section. If each part of this equation is plotted as a func-

tion of the water depth, three curves are obtained (Figure 1) represent-
ing the total momentum flux in the constriction for various depths at

g each location. The desired solutions (water depths) are then readily
avaflable for any class of flow. The momentum equation is based on a
trapezoidal section and therefore requires a trapecoidal approximation
of the bridge opening. A logic diagram for the momentum calculation

is shown in Figure 2.

Class A low flow occurs when the water surface through the bridge

is above critical depth, i.e., subcritical flow. The bridge routine
uses the Yarnell equation for this class of flow to determine the

change in water surface elevation through the bridge. As in the momentum
calculations, a trapezoidal approximation of the bridge opening is

used to determine the areas.

g Hy = 2K (K+ 100 - 0.6) (a + 15a%) v§ /28 where,

H3 = drop in water surface in feet from upstream to downstream
sides of the bridge

K = pier shape coefficient

w = ratio of velocity head to depth downstream from the bridge

« = 0bstructed area
otal unobstructed area

V3 = velecity downstream from the bridge in feet per second
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The computed upstream water surface elevation is simply the downstream
water surface elevation plus H3. With the upstream water surface ele-
vation known, the program computes the corresponding velocity head and
energy elevation for the upstream section.

Class B low flow can exist for either a subcritical or supercritical

profile. For either profile, class B low flow occurs when the profile
passes through critical depth in the bridge constriction. For a sub-
critical profile, critical depth is determined in the bridge, a new

downstream depth (below critical) and the upstream depth (above critical)
are calculated by finding the depths whose corresponding momentum fluxes
equal the momentum flux in the bridge for critical depth. With this so-
Tution, Statement 5227 DOWNSTREAM ELEV IS X, NOT Y, HYDRAULIC JUMP OCCURS
DOWNSTREAM is printed with the elevation X as the supercritical ele-
vation. The program does not provide the location of the hydraulic
Jump. A supercritical profile could be computed starting at the down-
stream section with a water surface elevation X. For a supercritical
profile, the bridge is acting as a control and is causing the upstream
water surface elevation to be above critical depth. Momentum equations
are again used to recompute an upstream water surface elevation (above
critical) and a downstream elevation below critical depth. For this
situation, the Statement 5920 UPSTREAM ELEVATION IS X NOT Y, NEW BACK~-
WATER REQUIRED is printed indicating a subcritical profile should be
calculated upstream from the bridge starting at elevation X.

Class C low flow is computed for a supercritical profile where

the water surface profile stays supercritical through the bridge con-
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striction. The downstream depth and the depth in the bridge are computed
by the momentum equations based on the momentum flux in the constriction
and the upstream depth.

Pressure Flow. The pressure flow computations use the orifice
flow equation of U, S. Army Engineering Manual 1110-2-1602, "Hydraulic
Design of Reservoir Qutlet Structures,” August 1963 (reference h):

Q = A{T—a"—- where,

H = difference between the energy gradient elevation upstream
and tailwater elevation downstream

= total loss coefficient

> x
[]

net area of the orifice

gravitional acceleration

Q = total orifice flow

The total loss coefficient K, for determining losses between the cross
sections immediately upstream and downstream from the bridge, is equal
to 1.0 plus the sum of loss coefficients for intake, intermediate piers,
friction, and other minor losses. The section on Loss Coefficients pro-
vides values for the total loss coefficient and shows the derivation
of the equation and the definition of the loss coefficient.

Weir Flow. Flow over the bridge and the roadway approaching the
bridge is calculated using the standard weir equation:

qQ = oan¥/? where,

C = coefficient of discharge

L = effective length of weir controlling flow




H = difference between the energy grade line elevation and the
roadway crest elevation

Q = total flow over the weir

The approach velocity is included by using the energy grade line eleva-
tion in 1{eu of the upstream water surface elevation for computing the
head, H. Values for the coefficient of discharge “C" are presented {n
the section on Loss Coefficients. Where submergence by tailwater exists,
the coefficient "C" is reduced by the program according to the method

_ indicated in reference {. Submergence corrections are based on an

' ' ogee spillway shape. As shown in Water Surface Profiles, I.H.D. Vol 6

(reference 1) the correction for submergence based on an ogee section

can lead to errors for high submergence on weirs with other shapes.
A total weir flow, Q, is computed by subdividing the weir crest into

segments, computing L, H, a submergence correction and Q for. each
segment, and summing the incremental discharges.

Combination Flow. Sometimes combinations of low flow or pressure

e L A e e Rt <1 EAT b e

flow occur with weir flow. In these cases a trial and error procedure
is used, with the equations just described, to determine the amount of
each type of flow. The procedure consists of assuming energy elevations
and computing the total discharge until the computed discharge equals,
within one percent, the discharge desired.

Decision Logic. The general flow diagram for the special bridge

1
1
routine is shown in Figure 3. By following the decision logic associ- 1
ated with a bridge solutfon, the program user can determine what adjust- |

ments he could make in the program input to alter the computed solution.
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A discussion of the logic sequence is provided to assist the user in in-
terpreting the solutfons he obtains.

The first step in the special bridge routine is to assume low flow
conditions and estimate the water surface elevation on the other side of ;
the bridge. How that estimate is made depends on whether the bridge has
plers. If there are bridge piers, the program goes through the momentum
equations to deterwine class of flow and water surface elevation. MWith- j
out piers, the prograa temporarily assumes the water depth is the same

on both sides of the bridge.

The program then checks for weir flow by comparing the estimated
water surface elevation to the minimum top of road elevation (ELTRD).
If it 1s possible that weir flow exists, the program estimates an energy

elevation based on the velocity head at the previous section.

i T e — e - -

The program then compares the estimated low flow energy elevation
to the maximum elevation of the bridge low chord (ELLC). If the low

e —

flow energy elevation (EGLWC) is greater than the low chord elevation
(ELLC) the program will calculate an energy elevation assuming pressure

flow (EGPRS). If the Tow flow energy elevation is less than ELLC, the

N "Nl T 7

program concludes that low flow controls and checks again to determine

-

if weir flow exists. If there is weir flow, the program will check
for piers. With piers, a trial and error solution will be made for

Tow flow (by the Yarnell equation) and weir flow (by the weir equatfion).
Without piers, the normal bridge solution (standard step calculation with
adjustments in area and wetted perimeter) will be used to compute the

12




upstream elevation. If weir flow did not exist, the program would check

for piers and then solve for a low flow solution. With piers, the 1ow flow

solution would be based on the momentum or the Yarnell equation; and
without piers, the solution would be computed using standard step
calculations.

Had the energy elevation required for pressure flow (EGPRS) been
calculated, the program would go on to compare the low flow energy el-
evation EGLWC with EGPRS to see which controls. The higher of the two
controls, as illustrated in the Typical Discharge Rating Curve shown

in Figure 4.

One exception to the direct comparisions of the two energy eleva-
tions is when the minimum elevation of the top of road (ELTRD) is less
than the maximum elevation of the low chord (ELLC). For this type of i

bridge, a combination of weir flow and low flow can occur. The low ,

flow energy elevation (EGLWC) is compared to the estimated maximum

energy elevation far low flow control (1.5 times depth plus invert
elevation), rather than EGPRS, because the low road elevation would
cause weir flow to exist prior to the occurrence of pressure flow.
Depth is defined here as the difference between the low chord (ELLC)
and tne invert elevation (ELMIN).

At critical depth, 1.5 times the depth represents the minimum
specific energy that could occur for a rectangular section. If critical
depth occurred just at the maximum low chord elevation, it would produce
the maximm possible energy elevation for Tow flow. Therefore, an energy

elevation greater than that value would have to be for pressure flow.

For the energy range between the low chord and the maximum low flow energy,

13
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the program will compute the energy elevations for low and weir flow and
pressure and weir flow. The higher of the two energy elevatfons will con-
trol. Energy elevations below the maximum low chord are for low flow or

low and weir flow for this type of bridge,
Based on the previous checks, the bridge routine has differentiated

between low flow and pressure flow. With either type of flow, the pro-
gram checks against the minimum top of road elevation (ELTRD) to deter-
mine if weir flow 2also exists. If the energy elevation is greater than
ELTRD, a trial and error solution is made to determine the distribution
of flow, The computed weir flow is 1isted under QWEIR and the flow
under the bridge is given under QPR regardless of whether it is low flow
or pressure flow. The flow diagram for computing the combination flow
solution is shown in Figure 5. Up to 20 iterations are made to balance
the total discharge to within 1% of the given discharge.

Important parameters in the decision logic of the special bridge
routine are the tno test elevations ELLC and ELTRD, Because they play
such an important role in the bridge routine, it is recommended they
always be coded as input on fields 4 and 5 of the X2 card.

Input Losses. One other method of computing water surface profiles
through bridges is to input the bridge loss. The loss used could be
Just the "structure” loss, or it could be the total loss between any
two adjacent cross section. Differences in water surface elevations
can be read on the X5 card for each discharge profile. The field read
on the X5 card is called by variable INQ on the second field of the Jl
card.

15
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For control structures, the known water surface elevations as pro-
vided by a rating curve can be read on an X5 card for multiple profiles.
However, for» a given X5 card, the data must consist entirely of either
known water surface elevations or of differences in water surface eleva-

tion. Both types of input cannot be placed on the same card.
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GENERAL MODELING GUIDEL INES

Considerations in modeling the geometry of a reach of river in the
vicinity of a bridge are essentially the same for both the normal and
special bridge routine. Suggested techniques are presented in this

section and are applied in subsequent examples on bridge coding.

Cross Section Locations

Figure 6 shows in plan view the basic configuration of cross sections
for computing losses through bridges. For ease of discussion, assume a
subcritical profile starting downstream from the bridge.

Section 1 is sufficiently downstream from the bridge that flow is
not affected by the bridge. The flow has fully expanded, and the basic
input problem is to determine how far downstream from the bridge the
cross section should be located. A rule of thumb is to locate the
downstream section about four (4) times the average length of the sfide
constriction caused by the bridge abutments. Therefore, section 1
would be located downstream from the bridge 4 times the distance AB or
CD shown in Fig. 6. Because the constriction of flow may vary with the
discharge, the downstream reach length should represent the average con-
dition if a range of discharges are used in the model.

Locating cross sectfon 1 based on a 4:1 expansion of flow down-
stream from the bridge may provide a reach length to cross section 2

that is too long for a reasonable estimate of friction loss. If in-
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Figure 6. Cross Section Locations‘in the Vicinity of Bridges
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termediate cross sections are required, the 4:1 expansion rate could
be used to locate the lateral extent of intermediate sections. The
user should carefully review the program output to determine if an
adequate number of cross sections are used. A change in energy slope
by a factor of two between the two sections and a relatively long
reach would indicate a need for intermediate sections.

Section 2 is a river cross section immediately (i.e., within a
foot or two) downstream from the bridge. The section should reprer
sent the effective* flow area just outside the bridge and 1ts loca-
tion could be considered as the downstream face of the bridge. It is
important to work with effective flow area because it is assumed in
the application of the energy equation that the mean downstream velocity
for each subsection can be determined from Manning's equation., The
method used to define the effective flow area at this cross section {is
discussed under Effective Flow Area. The standard step solutfon at sec-
tion 2 would include determination of the expansion loss from section 2
to section 1.

The bridge loss occuring from section 2 to section 3 is detemined
by either the special bridge routine with the SB card or by standard
step calculations through one or two sections that define the bridge

opening (normal bridge routine). The selection of the bridge routine

*Effective flow is that portion of flow where the main velocity is nor-
mal to the cross section and in the downstream direction.
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and the input requirements are presented in subsequent sections.

Section 3 represents the effective flow area just upstream from
the bridge. The reach lengths from section 2 to section 3 are generally
equal to the width of the bridge. The energy elevation computed by the
special bridge routine is applied to this section or, for the normal
bridge routine, a standard step solution from a section in the bridge
to this section provides the energy elevation. The energy loss computed
between sections 2 and 3 represents the 1oss through the bridge struc-
ture itself.

Section 4 is an upstream section where the flow 1ines are approxi-
mately parallel and the full cross section is effective. Because the
flow contraction can occur over a shorter distance than the flow expan-
sion, the reach length between sections 3 and 4 can be about one (1)
times the average bridge opening between the abutments (distance B-C in
Figure 6). However, this criterion for locating the upstream section
may result in too short a reach length for situations where the ratio
of the width of the bridge opening to the width of the flood plain is
small. An alternative criterion would be to locate the upstream cross
section a distance equal to the bridge contraction (distance AB or CD
in Figure 6). The program will compute the contraction portion of the
bridge loss over this reach length by the standard step caiculations.

Effective Flow Area

A basic problem in setting up the bridge routines is the defini-

tion of effective flow area near the bridge structure. Referring to




Figure 6, the dashed lines represent the effective flow boundary for
low flow and pressure flow conditions. Therefore, for cross sections
2 and 3, ineffective flow areas to either side of the bridge opening
(along distance AB and CD) should not be included for low flow or pres-
sure flow. The elimination of the ineffective overbank areas can be
accomplished by redefining the geometry at sections 2 and 3 (as shown
in part C of Figure 7) or by using the natural ground profile and re-
questing the program’s effective area option to eliminate the use of
the overbank area. By redefining the cross section, a fixed boundary
is used at the sides of the cross sectfon to contain the flow, when
in fact a solid boundary is not physically there. The use of the ef-
fective area option does not add wetted perimeter to the flow bound-
ary above the given ground profile.

The bridge example shown in Figure 7 is a typical situation where
the bridge spans the entire floodway and its abutments obstruct the
natural floodway. This is the same situation as was shown in plan view
in Figure 6. The section numbers and locations are the same as those
discussed in Cross Section Locations. The input problem is to convert
the natural ground profile at cross sections 2 and 3 from the section
shown in part "b" to that shown in part "c* of Figure 7.

The effective area option of the program (IEARA = 10 in field 1
of the X3 card) is used to keep all the flow in the channel until the
elevations associated with the left and/or right bank stations are ex-
ceeded by the computed water surface elevation. The program will allow

the controlling elevations of the left and right bank stations to be




A. Channel Profile and Section Locations

B. Sridge Cross Section on Hatural Floodway

C. Portion of Cross Sections 2 & 3 Effective for Low Flow and Pressure
Flow

Figure 7. Cross Sections Near Bridges
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specified by the user. This is done by reading in effective-area eleva-
tions (ELLEA and ELREA) in fields 8 and 9 of the X3 card. If these el-
evations are not read in, elevations specified on GR cards for the left
and right bank stations will be used.

The effective area option applies to the left and right bank sta-
tions; therefore, those stations should coincide with the abutments of
the bridge. For cross sectfons 2 and 3, the left and right bank stations
should line up with the bridge abutments. An X3 card would be used with
these sections to call for the effective area option and to designate
effective-area elevations for the left and right bank stations. The
given elevations would correspond to an elevation where weir flow would
just start over the bridge. For the downstream section, the threshold
water surface elevation for weir flow is not usually known on the in-
itial run, so an estimate must be made. An elevation anywhere between
the low chord and top-of-road elevation could be used; so an average
of the two elevations might be a reasonable estimate.

Using the effective area option to define the effective flow area
allows the entire overbank to become effective as soon as the effective-
ared elevations are exceeded. The assumption is that under weir flow
conditions, the water can generally flow across the whole bridge length
and the entire overbank in the vicinity of the bridge would be effective~
ly carrying flow up to and over the bridge. If it is more reasonable to
assume only part of the overbank is effective for carrying flow when the
bridge is under weir flow, then the cross section should be redefined




for sections 2 and 3 to eliminate the portion of the overbank area
considered ineffective even under weir flow conditions.

Cross section 3, just upstream from the bridge, is usually coded
in the same manner as section 2. In many cases the cross sections are
identical. The only difference generally is the elevation to use for
the effective area option. For the upstream section, the elevation
would be the low point of the top-of-road (ELTRD).

Using the effective area option in the manner just described for
the two sections on either side of the bridge provides for a constricted
section when all of the flow is going under the bridge. When the water
surface is higher than the control elevations used, the entire cross sec-
tion is used. The program user should check the computed solutions on
either side of the bridge section to insure they are consistent with
the type of flow. That is, for Tow flow or pressure flow solutions, the
printout should show the effective area restricted to the main channel,
When the bridge routine indicates weir flow, the solution should show

that the entire cross section is effective.

Selection of Methods

When selecting the method of computing the water surface profile
through a bridge, there are three basic choices: (1) determine the
change in water surface elevation or the water surface elevation by

an “"external” technique and input the results into the program, (2) cal-
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culate the energy loss based on friction using the standard step method
- norwal bridge routine, or (3) calculate the energy loss by previously
discussed formulas of the special bridge routine. Each method should
be considered and the following discussion provides some basic guidelines.
Input Losses. The following are examples of when a change or known
water surface elevation might be read into the program: :
1. If a structure is a control and a rating curve is available,
reading in the known water surface elevation is the easiest and surest
way to establish proper water surface elevations.
2. The use of observed data to estimate losses through a bridge
can also be an expeditious method of establishing the losses.

3. An alternate computation technique can be used such as the
Bureau of Public Roads procedure (reference j) for determining the loss
for low flow conditions. The calculated loss can then be read in. Care
must be taken to insure the loss calculated by alternate methods are
properly used in the program. For example, the Bureau's technique pro-
vides the increase in water surface elevation above the normal water
surface elevation without the bridge. Therefore, it includes the effects
of contraction and expansion losses and the loss caused by the structure,
but it does not reflect the normal friction loss that would occur with-
out the bridge. b

Normal Bridge Routine. The use of the standard step method for

computing losses is most applicable when friction losses are the pre-

dominate consideration. The following examples are some typical cases
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where the normal bridge routine might be used.
1. Because the special bridge routine requives a trapezoidal

approximation of the bridge opening for low flow solutions, the normal

bridge routine could be used where the flow area cannot be reasonably
approximated by a trapezoid. (See the suggested approach for Multiple
8ridge Openings.)

2. For long culverts under Tow flow conditions, the standard step
method is the most suitable approach. Several sections can be taken
through the culvert to model changes in grade or shape, or to model a
very long culvert.

3. In cases where the bridge and abutments are a small obstruction
to the flow, the normal bridge routine can be used.

4. In the special bridge routine, the correction for submergence

in the weir flow calculations is not very reliable for high submergence

on weirs that are not ogee shaped, The normal bridge routine may then
be preferable.

Special Bridge Routine. The special bridge routine is capable of

solving a wide range of flow problems. The following are situations
vwhere the routine is applicable.

1. The special bridge routine will determine the class of low flow
based on a trapezoidal approximation of a bridge with piers. If a bridge
opening can be reasonably modeled by a trapezoid, the program will deter-
mine when the profile goes through critical depti: and what the correspond-
ing water surface elevation is on efther side of the bridqe.

2. Pressure flow is computed using the orifice equation. The ori-




fice coefficient can be computed to account for friction; therefore, the
special bridge routine would be suitable for pressure flow through long
culverts.

3. Meir flow is computed in the special bridge routine; therefore,
dams and weirs can be modeled as well as bridges. When computing pres-
sure flow or weir flow, the program user might consider whether the
bridge deck could survive such conditions.

4, Combinations of low or pressure flow and weir flow can be com-
puted using the hydraulic formulas. An iterative procedure solves the
combination flow problem for a variety of conditions. For Tow flow and
weir flow solutions the bridge must have piers for the program to handle
the low flow part of the combination flow. Otherwise the program will

revert to the normal bridge routine,

Loss Coefficients

After the cross sections are located and the method of solution is
determined, the program user has to select coefficients associated with
the method chosen. For the normal bridge routine the Manning's “n" val-
ues are used to determine the friction loss. The contraction and ex-
pansion losses caused by the bridge are estimated using contraction and
expansion coefficients.

Contraction and Expansion Coefficients. These coefficients are

used to compute energy losses associated with changes in the shape of

river cross sections. The loss due to expansion of flow is usually
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mech larger than the contraction loss, and losses from short abrupt
transitions are larger than losses from gradual transitions. The
transition loss is computed by multiplying a coefficient times the
absolute difference in velocity heads between cross sections. If

the valuas for the coefficients are being redefined to account for
contraction and expansion through a bridge, the new values are read on
the NC card prior to the section where the change fn velocity head is
evaluated. Referring back to Figure 6, on a subcritical profile the
new values should be read in just before section 2 and changed back to

the original values after section 4. Typical values are shown below.

Coefficients
Expans fon Contraction
No transition loss computed 0.0 0.0
Gradual transitions 0.3 0.1
sridge sections 0.5 0.3
Abrupt transitions 0.8 0.6

The maximum value for the expansion coefficient would be one (1.0).

Special Bridge Coefficients, When using the special bridge

routine, coefficients must be read in for the Yarnell equation, the
orifice equation, and the weir equation. The following discussion pro-
vides suggested values and methods for estimating the required coeffi-
cients.

Pier Shape Coefficient XK is used in Yarnell's energy equation for

computing the change in water surface elevation through a bridge for

29
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class A low flow. Because the calculation is based on the presence of
piers, both the coefficient and a total width (BWP) must be read on the
SB card. If there are no piers, both variables can be left blank and
the program will use a standard step solution for low flows. The follow-

ing table gives values of XK for various pier shapes.

Pier Shape K
Semicircular nose and tail 0.90
Twin-cylinder piers with connecting diaphragm 0.95
Twin-cylinder piers without diaphragm 1.05
90° triangular nose and tail 1.05
Square nose and tail 1.25

The Yarnell equation is a semi-empirical equation based on hydraulic
model data., As such, it probably should not be applied in cases where
the flow obstruction is something other than a pier; for example, the
111 separating twin circular culverts.

Loss Coefficient XKOR is used in the orifice flow equation, Q =

AN2gH/K. This form of the equation can be derived by applying the
energy equation from a point just downstream from the bridge (2) to

a point just upstream (1).

9 v
y]+zl+u‘ 5 =y2+22*az-2-—g "‘HL (1)

where:

y = depth of water

Z = 1invert elevation




2

v
2 =

a 75 velocity head

HL = head loss

Defining the head (H) on the orifice as the difference between tne upstream
energy elevation and the downstream water surface elevation (the definf-
tion used in HEC-2) produces:

2
H (y, +2. + ] - (y, +2,)
=ttt - bty (2)

Substituting H from equation 2 into equation 1 produces:

2
.22,
W= =4 (3)

Head loss (HL) through the bridge can be defined in terms of the bridge
velocity head and loss coefficient Kb. The expansion to a point just

downstream can be defined by an expansion coefficient Ke and the change

in velocity head.

V2 ve v2
b b @2%2

where:
b = subscript designating the bridge
The head loss equation 4 then can be used to define “L in equation 3:

s,V v ": agVs
H.T+Kb(T)+Ke(T-T) (5)
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If the expansion coefficient (K') is taken as 1.0, the equation can
be rewritten into the form of the orifice equation by adding the con-
tinuity equation (Q = VA).

Q= A\IZQH/K (6)

where:

K= Kb +1

The loss coefficient used in the program's orifice equation can
be related to the loss coefficient C from another commonly used orifice

flow equation, Q = CA QZgh. The conversion (XKOR = l/Cz) can be used

in utilizing tabulated values of C. However, care must be taken to in-

sure the definition of h used in the various formulations is applicable.

The Bureau of Public Roads (reference j) shows experimental values
for C for fully submerged conditions to vary from 0.7 to 0.9. A value
of 0.8 is recommended as being applicable for the average two to four
lane concrete girder bridge. The definition of h is consistent with
that used in HEC-2. In the absence of calibration data, a value of
1.56 for XKOR (C = 0.8) would be applicable to most bridges and short
culverts. For longer culverts, the coefficients given in Exhibit 2 of

HEC-2 Users Manual can be used to compute XKOR as follows:

XKOR = ke tketl

where:
ke = entrance loss coefficient
k = friction loss coefficient




WP e

‘the coefficient for friction loss (kf) can be computed from Manning's
equation by equating two equations for friction l1oss in the culvert.

v2
b_ . . L 7)
kf —2-9-— Sf (
where:
Sf = the average friction slope

L = the length of the culvert

Manning's equation for the velocity in the culvert is rearranged to

define Sf:
. .49 02/3 172
Vb —— R Sf
Vzn2
2.22R

By substituting equation 8 for equation 7, the coefficient kf can
be defined based on culvert parameters.
Vsnz 29
K z o | o
f o 2.28003 vE

ke = 292L/RY3 (9)
Typical values of the coefficients are shown below
Description k
Intake 0.1 to 0.9
Intermediate piers 0.05
Friction (Mannings equation) kf
XKOR = zk +1
where:
English kf = 29nzL/R4/3
Metric ke = 19.6néL/RY3
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King's Handbook (reference e), in its discussion on pipe culverts,
gives an entrance loss of .1 for a flush inlet, and 0.15 for a project-

ing inlet for concrete pipes. Inlet loss coefficients as high as 0.9

for a projecting entrance and corregated metal pipes are indicated. All

PP S VU0

the coefficients were applied to the velocity head for the pipe.
For Multiple Culverts, an equivalent coefficient can be computed

to apply in cases where all culverts are flowing full.

4 Q = V290 AT ~/T/K

equiv

where:
K‘equiv 2
1
AT = Total area H
A, = Area of individual culvert

Coefficient for individual culvert

x
e

"
At o shiegnne

n = pumber of culverts

Coefficient of Discharge, COFQ is used in the standard weir equation:

Under free flow conditions (discharge independent of tailwater) the co- ]

efficient of discharge “C", ranges from 2.5 to 3.1 (1.39 - 1.72 metric)
for broad-crested weirs depending primarily upon the gross head on the
crest ("C* increases with head). Increased resistance to flow caused by

obstructions such as trash on bridge railings, curbs, and other barriers

< 34




would decrease the value of C. With submerged flow (discharge affected
by tailwater), the coefficient “C" should be reduced. .This is done au-
tomatically by the program using the Waterways Experiment Station Design
Chart 1114. The correction is based on model studies with a Tow ogee
crest weir.

Tables of weir coefficients (C) are given for broad-crested weirs in
King's Handbook with the value of C varying with measured head (H) and
breadth of weir. For rectangular weirs with a breadth of 15 feet and a
H of 1 foot or more the given value is 2.63. Trapezoidal shaped weirs
generally have a larger coefficient with typical values ranging from
2.7 to 3.8.

Hydraulics of Bridge Waterways (reference j) provides a curve of C
versus the head on the roadway. The roadway section is shown as a trap-
ezoid and the coefficient raptdly changes from 2.9 for a very small H to
3.03 for H = 0.6 feet. From there, the curve levels off near a value
3.05.

With very little prototype data available, it seems the assumption
of a rectangular weir for flow over the bridge deck (assuming the bridge
can withstand the forces) and a coefficient of 2.6 would be reasonable.
If the weir flow is over the roadway approaches to the bridge, a value
of 3.0 would be consistent with available data. If weir flow occurs
over a combination of bridge and roadway, an average coefficient (weighted
by weir length) could be used.
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EXAMPLES OF INPUT PREPARATION

Introduction

Example problems using the two bridge routines and the direct input
of bridge loss are provided to illustrate input preparation, The special
bridge routine is used for a “typical bridge with piers® and the normal
bridge routine is used for a circular culvert. A simple example 11lus-
trates use of the X5 card to read in a change in water surface elevation.
A separate section, Bridge Problems and Suggested Approaches, presents
the modifications of basic input requirements for some typical bridge
problems such as multiple bridge openings, perched bridges, low water
bridges and others.

Special Bridge Routine Example

The example problem shown 1n'Figure 8 1s a bridge that spans the
entire floodway and has abutments that constrict the natural flow. To
simplify input, it will be assumed that the reach has a constant cross
sectional shape and has a bed slope of zero. Other pertinent data is
shown on the Figure. The following discussion describes the input pro-
blem and the input is shown in Figure 9. A computer run with the data
set is given in Appendix I.

The problem is set up for a multiple profile run using the QT card.
Manning's ‘n’ values are read on the NC card and contraction and expans-
ion coefficients of 0.3 and 0.5 were selected.

Cross Section 1 1s the downstream cross section located where the
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flow has fully expanded beck onto the flood plain. The section will be re-
peated as cross section 2; therefore, the left and right bank stations
are selected to be conrsistent with the bridge opening. The section is
located downstream using the 4:1 expansion of the flow as previously
presented. The reach lengths for the first section are set to zero as
this is the section where the profile is being initiated. The GR cards
are used to describe the natural ground section in the usual manner.

Cross section 2 is immediately downstream from the bridge. The
reach lengths between sections 1 and 2 are set equal to 4 times the aver-
age abutment length (75 ft &) for a total reach length of 300 ft. Because
the natural section was considered applicable, the ground profile was
repeated.

The effective area option is used at section 2 to confine the flow
to the bridge opening when flow through the bridge is low flow or pres-
sure flow., The left and right bank stations have already been set con-
sistent with the abutment locations. All that is required is the X3
card with a 10 in the first field and the selection of an elevation
above which weir flow can be expected over the bridge. For the initial
data input, the elevation at cross section 2 corresponding to weir
flow is generally unknown, so an estimate must be made. In the example,
water cannot flow around the bridge so weir flow must pass over the
bridge. A reasonable estimate for the downstream elevation (i.e. at cross

section 2) is an elevation midway between the low chord and top of road

elevations, or 36 feet in this example. The 1imiting elevations for the




effective area option are entered in fields 8 and 9 of the X3 card.
Card SB defines bridge characteristics for the special bridge rou-
tine. The first three variables are the coefficients for computing

class A low flow, pressure flow, and weir flow respectively. The first
field contains the pier shape coefficient for the Yarmell equation. The
shape of the piers is the basis for selecting the coefficient as shown
on page 30, For the example, twin-cylinder piers without diaphragm re-
quire a coefficient of 1.05. For a bridge without piers, the first

- field can be left blank,

For the pressure flow calculations, the value of XKOR is used in
the orifice equation. Based on the typical value suggested by the
Bureau of Public Roads, a value of 1.6 was selected.

The weir flow coefficient, COFQ, is used to calculate weir flow.

In the example, most of the weir flow would occur over the bridge rather

than the road, so a value of 2.6 was selected.

The variable RDLEN was not used because it is only applicable for a
horizontal weir with a crest length RDLEN. To define the weir profile
for the example problem the BT cards are used.

Six variables on the SB card provide the data to model the bridge
opening. Five variables define the bridge for low flow calculations
with the momentum and Yarnell equations. The bottom width of the trapezoid
(BWC) and the side slgpes (SS) provide the basic trapezoid. Variable
BWP gives the total width of piers and ELCHU and ELCHD give the upstream

and downstream elevations for the invert of the trapezoid. The sixth




variable, BAREA, provides the net area of the bridge opening for cal-
culating pressure flow.

In making a trapezoidal approximation of a bridge opening, dimen-
sions should be chosen so that the corresponding water surface elevation

vs. area curve duplicates as closely as possible the elevation vs. area

curve for the actual bridge opening. If the area-elevation relation cannot
be preserved over the complete range of elevations, emphasis should be
placed on the range of elevations to be used in the problem. If low
flows are to be run, then the elevation-area curve corresponding to the
trapezoid should be appropriate for the lower depths in the bridge sec-
tion. For high flows, the small depths would not be as important. To
check the trapecotidal area for large flows (where the opening is sub-
merged), the program user should compute the het area of the bridge
opening using the trapezoidal model and compare it to the net bridge
area (BAREA) based on the actual bridje. The two areas should be close,
especfally if flows near the bridge's low flow capacity are being com-

puted.
The variables ELCHU and ELCHD define the upstream and downstream

invert elevations for the trapezoidal area. If the trapezoid invert
is the same as the minimum elevation (ELMIN) for the previous cross
section (section 2 in this example), then the elevations can be left
blank on the SB card. In some cases, the invert elevation must be set
higher than ELMIN to give a better bridge model (elevation-area curve)

at higher discharges. In those cases, the invert elevations can be




read on the SB card.

For the example problem, the invert elevation for the trapezoid was
set at 20 feet, slightly higher than the actual elevation. A bottom
width of 15 feet and side slopes of 1.6 give a reasonable trapezoidal
approximation. Total net area based on the trapezoidal model {is 555
square feet.

The variable BAREA is the net area under the bridge to be used in
the orifice equation. Once the program has determined that flow through
the bridge is by pressure flow, the trapezoidal approximation is no
longer used, and flow calculations are made using the orifice equation.
The total open area under the bridge (BAREA) is used for the pressure
flow calculations. Based on the given bridge geometry, an area of 565
square feet is entered in field 7 of the SB card.

Cross section 3, ismediately upstream from the bridge, is a repeat
of cross section 2 for this example. The reach lengths for this section
are the length of the water course through the bridge.

Following the X1 card for section 3 is an X2 card. This card is
required with the special bridge routine to call the special bridge
routine (IBRID = 1 in field 3) and to give test elevations for pressure
flow and weir flow (ELLC and ELTRD in fields 4 and 5). The maximum el-
evation on the low chord of the bridge, ELLC, 1s used by the program to
check if there is a possibility of pressure flow. The low point of the
top of road, ELTRD, 1s used to test if weir flow exists. Even though
the program can scan the BT cards to find these elevations, it is good
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practice to always specify them on the X2 card. Also, the need for low
chord elevations on the BT cards is eliminated when coding a bridge
with plers for the special bridge routine. The effective area option
is defined for section 3 in the same manner as for section 2. For the
upstream side of the bridge, the elevations for the control of effective
area are set to the minimum top of road (ELTRD). As in section 2, the X3
card has a 10 in the first field and the control elevations in fields 3
and 9.

The BT cards, necessary to define the weir for the special bridge
routine, are placed with input cards for section 3. Because the bridge

in the example problem has piers, the program will remain with the special

bridge routine for all solutions, That is, the program cannot revert
to the normal bridge routine for the given input. This is important
to check when coding the BT cards because 1t can simplify input. If
the program remains in the special bridge routine, all that is needed
on the BT cards {1s specification of road stations and elevations to
define the weir, In defining the weir under these circumstances, road

stations do not have to be consistent with the GR card statfons.

Without a pier, the special bridge routine will use standard step
calculations for Tow flow and for combination weir and Tow flow solutions

(the weir equation would not be used). When standard step calculations

are made, the program computes conveyance by segments across the sec-
tion; therefore, the BT stations under these conditions would have to

line up with GR stations and both top of road and low chord elevations

"
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would have to be given. The BT cards in the example show the minimum
required data for the example problem.

Section 3 is a repeat section, so there are no GR cards. If GR
cards were used with section 3, they would follow the BT cards.

Cross section 4 completes the model for the example problem. It is
a full flow section located upstream from the bridge beyond the zone of
tlow contraction. The reach length is estimated by a one to one ratio
of the average abutment constriction on the flow. In the example, the
distance is 75 feet. Because the same ground geometry is used, no GR

cards are read.

If the contraction and expansion coefficients, read on card NC,
were to be changed to lower values for subsequent profile calculations
proceeding upstream from cross section 4, the new values would be read
in after section 4 and before the next X1 card.

The coded imput for this problem was run on HEC-2. The program out-
put is shown in Appendix I.

Normal Bridge Routine Example

The second example,a circular culvert, will be modeled using the
normal bridge routine. Again, the problem is fairly simple and intended
to illustrate the basic input requirements. The geometric data are
shown in Figure 10 and the completed coding form is shown in Figure 11,
The computer solution for the problem is shown in Appendix II. ODiscus-
sion of the input follows.
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Natural section with fill and 10’ ¢ cuivert
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Sections 2 and 5 (reduced to effective area)
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Figure 10. Normal Bridge Routine Section
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A single profile is to be calculated with Manning’s 'n' values
defined on the NC card. The starting n values define the natural chan-
nel and overbanks. Contraction and expansion coefficients of 0.3 and

' 0.5 respectively were selected.
The first two cross sections represent the same modeling situation

discussed under the special bridge routine example. Cross Section 1 is

the downstream section located where the flow has fully expanded onto
the flood plain. It is located 100 feet downstream from the bridge based

on the 4:1 expansion of the flow as previously presented. Cross Section

2 is just downstream from the bridge and represents the contracted ef-
fective flow leaving the culvert. The X3 card is used, as before, to

call the effective area option and to extend the elevation of channel

control for cases where all the flow is going through the culvert.

Input for the normal bridge routine’différs from input for the
special bridge at this point. After cross section 2 located immediately

downstream from the bridge, comes cross section 3 representing a section

through the bridgg. For the culvert the Manning's *n' value for the
channel should ch;nge. Therefore, the NC card is read in prior to
cross section 3 with a channel 'n* value of 0.012 for the culvert,
After changing the 'n' value for the culvert, the culvert is des-
cribed using the X1 and @R cards to describe the lower half of the cul-
vert and the BT cards to describe the top half. Becawse the main chan-
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nel for section 2 is defined as the lower half of the culvert, section 3
is read in as a repeat section. 7To model the culvert, BT cards are

added to section 3 to complete the top half of the culvert.

The BT cards for the normal bridge routine should only have sta-
tions that are used on the GR cards. Consistent stationing is required
because the program computes the conveyance of the cross section incre-
mentally for each GR station. To properly correct the area and wetted
perimeter for the presence of the bridge, the given BT stations must
coincide with the GR stations. For GR stations between given BT sta-
tions, the program will linearly interpolate the road elevation (vari-
able RDEL) and low chord elevation (variable XCEL) to calculate the {

incremental conveyance.

For bridge stations in the overbank areas, the low chord eleva-

tion (XCEL) is usually set equal to the ground point elevation (EL on

the GR card). In the channel area, the low chord elevation defines the

low chord of the bridge. For the example problem, the low chord eleva-
tions define the top half of the culvert. The top of road elevations
define the road profile for the cross section. ﬂ

As Cross Section 3 is just inside the culvert on the downstream

side, Cross Section 4 is located inside the culvert at the upstream

end. This section is a repeat secti&n of the downstream culvert sec-
tion. The cross section elevations were not changed; however, the cul-
vert can be modeled with a slope by adding an incremental elevation in
field 9 of the X1 card. The BT cards for this section are also repeated
from section 3 by using the X2 card with a 1 in field 7 (variable REPBT).




If the culvert had been modeled with a slope, the same incremental ele~
vation adjustment used on the X1 card would be appliied by the program to
the low chord elevations on the BT card. The top of road elevations are
not changed by the program. The standard step solution from section 3 to
section 4 determines friction and expansion or contraction losses througn
the culvert. If only friction losses should be computed, the values

for the contraction and expansion coefficients should be redefined to
very small values just before section 4. After section 4, the values

can be reset to calculate shock losses.

Cross Section 5 represents the effective flow area just upstream

from the bridge. The Manning's 'n' value must first be changed back to
represent the channel. An NC card with the channel 'n' value is read in
just before cross section 5. The section is modeled as a repeat of the
cross section 4, but without the BT cards. The effective area option is
again used to maintain the flow in the channel up to the top of road
elevation (X3 card with 10 in field 1 and control elevations in fields

8 and 9).

The last cross section for the bridge model is a section upstream

from the zone of contraction for the bridge. Cross Section 6 represents

the full flood plain and is located 25 feet upstream determined by using
a one on one contraction rate. The ground section is redefined by GR

cards. This cross section completes the geometric model for the Normal

Bridge routine.




Input Bridge Loss Example

Bridge losses can be read into the program by two different meth-
ods. A bridge loss in terms of a change in water surface elevation can
be read on the X2 card (variable BLOSS on field 6) or on the X5 card.
The X5 card will be demonstrated ip this example because it can be used
for multiple profiles, where as only a single loss can be read on the

X2 card.

The example used with the special bridge routine will be repeated
here. However, instead of modeling the bridge, the calculation will
involve only cross sections 1 and 4 (see fig. 8 on page 37) and the
bridge loss will be input at cross section 4. It is assumed for the ap-
plication that the bridge loss has been determined externally from the
program,

The input is a repeat of that for the previous Special Bridge
Example (Figure 8 and 9) up through the first cross section. This is
followed by input for the far upstream cross section 4. An X5 card is
added to the usual data at section 4.

The X5 card can be used in two ways. Either a water surface eleva-
tion or a change in water surface can be defined. The choice is indicated
on the card by the sign used (plus or minus) with the variable N on the
first field. The variable indicates the number of values to be specified
on the X5 card. A postive N indicates water surface elevations and a
negative N indicates increments of water surface elevation. The latter

is used in this example.
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On multiple profile runs, the variable INQ (Field 2 of the J1 card)

tells the program which field of the QT card to read. The same procedure

is used to read the X5 card. In this example, each field to be read on
the QT card has a corresponding bridge loss to be read on the X5 card.
The first field of the X5 card shows the number of values to be read.
The value in the first field {s negative to indicate that changes in
water surface elevation are to be read. The changes in the example are
the computed results from the special bridge example. The computer run
is shom in Appendix III.
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BRIDGE PROBLEMS AND SUGGESTED APPROACHES

The examples presented in the previous section were for relatively
simple structures so that fundamental principles of input preparation
could be emphasized. However, many bridges are more complex than the
one illustrated, and the following discussion is intended to show how
HEC-2 can be uéed to calculate profiles for some of the types of
bridges that are frequently encountered. The discussion here will be
an extension of the previous examples and will address only tnose aspects

of input preparation that have not been discussed previously.

Multiple Bridge Opening

Many bridges have more than one opening for flood flow, especial-
ly over very wide flood plains. Muitiple culverts, bridges with side
relief openings, and separate bridges over a divided channel are all
examples of multiple bridge openings. With more than one bridge open-
ing, and possibly different control elevations, the problem can be very
complicated. Some general considerations follow.

For low flow situations, the normal bridge routine is more applica-
ble than the special bridge routine. The SB card cannot be used to
model more than one trapezoidal bridge opening. Modeling two or more
separate bridge openings as one trapezoidal section with wide piers

(variable BWP) is generally unsatisfactory because the semi-empirical

Yarnell equation has not been calibrated for such flow conditions.




Pressure flow can be modeled with the special bridge routine, how-
ever, only one controlling elevation (ELLC) can be used. Therefore, if
the maximum low chord elevation (variable ELLC) is the same on all bridge
openings, or if the flow is high enough to inundate all the openings,
the orifice equation can be used. The section on Loss Coefficients
provides a method of computing an equivalent coefficient for multiple
culverts.

If flow through some of the culverts is low flow while flow through
other culverts is pressure flow, the program can not provide a direct
solution with the special bridge routine. To use the special bridge
routine, the openings would have to be modeled separately and a, "divided
flow" approach would be required. (See Chow's "Open Channel Hydraulics,"
section on Flow Passing Islands, reference k.) A normal bridge solution
could be directly obtained if the distribution of flow based on conveyance
was reasonable and if one water surface elevation could be assumed for
the entire bridge section.

Computer determination of low flow by the normal bridge routine
and pressure flow by the special bridge routine can be obtained in a
multiple profile run. By coding the bridge input using the special
bridge routine but without a pier, the program will use the normal
bridge routine for low flow solutions. The BT cards would have to bLe
coded consistent with requirements for the normal bridge routine. For
the higher discharges where pressure flow occurs, the solution would be

obtained from the orifice equation in the special bridge routine.
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Dams and Weirs

Flow over uncontrolled dams and weirs can be modeled with the
special bridge routine. Weir flow is calculated over weirs defined by
either the stations and road elevations on BT cards or by a fixed weir

length (RDLEN) and elevation (ELTRD) defined on cards SB and X2 respec-

tively. To use the special bridge routine where all flow is weir flow

requires the same basic data as for a bridge. Recalling the calculation
sequence, the special bridge routine assumes low flow and then pressure
flow prior to determining that weir flow exists. On the SB card, it is
necessary to input some arbitrarily small values for the variables de-

fining the trapezoid and the orifice area (variables BWC, BAREA, and R
SS). The small areas defined by the trapezoid and BAREA will cause the 4

program to solve for a combination of pressure flow and weir flow. With
a very small orifice area, the pressure flow will be negligible and a

weir flow solution will have been achieved.

Perched Bridges

A perched bridge is one for which the road approaching the bridge
is at the flood plain ground level, and only in the immediate area of
the bridge does the road rise above ground level to span the watercourse.
A typical flood flow situation with this type of bridge is to have low
flow under the bridge and overbank flow around the bridge. Because the

road approaching the bridge is usually not much higher than the surround-

ing ground, the assumption of weir flow is often not justified. A solution




based on standard step calculations would be better than a solution
based on weir flow with correction for submergence. Therefore, this
type of bridge should generally be modeled using the normal bridge
routine, especially when a large percentage of the total discharge is

in the overbank areas.

Low Water Bridges

A low water bridge is designed to carry only low flows under the
bridge. Flood flows are carried over the bridge and road. When model-
ing this bridge for flood flows, the anticipated solution is a combina-
tion of pressure and weir flow, which implies using the special bridge
routine. However, with most of the flow over the top of the bridge, the
correction for submergence may introduce considerable error. If the
tailwater is going to be high, it may be better to use the normal bridge
routine. In fact, if almost all the water is over the top, the bridge
may be modeled as a cross section over the top of the bridge, ignoring

the flow under the bridge.

Bridges on a Skew

Skewed bridge crossings are generally handled by making adjustments
to the bridge dimensions to define an equivalent cross section perpendie-
ular to the flow lines. The adjustments can be made in the normal bridge
routine by multiplying the actual dimensions of the bridge by the cosine
of the skew angle. The cosine of the angle is coded on the X1 card

<




(variable PXSECR in field 8) for the cross section coordinates on GR
cards and on the X2 card (variable BSQ on field 9) for the data on the
BT cards. If the special bridge routine is used, the data coded on the
SB card must be adjusted prior to input. There is no internal method in
the program to adjust the data on the SB card.

In the publication "Hydraulics of Bridge Waterways” (reference j)
the effect of skew on low flow is discussed. In model testing, skewed
crossings with angles up to 20° showed no objectionable flow patterns.
For increasing angles, flow efficiency decreased. A graph illustrating
the impact of skewness indicates that using the projected length is

adequate for angles up to 30° for small flow contractions.

Parallel Bridges

With the construction of divided highways, a common modeling problem
involves parallel bridges. For new highways, these bridges are often
identical structures. The hydraulic losses through the two structures
has been shown to be between one and two times the loss for one bridge
(reference j). The model results shown in reference j indicate the loss
for two bridges ranging from 1.3 to 1.55 times the loss for one bridge
crossing, over the range of bridge spacings tested. Presumably if the
two bridges were far enough apart, the losses for the two bridges would
equal twice the loss for one. For the program user faced with a dual
bridge problem, computing a single bridge loss and then adjusting it

with criteria from reference j may be the most expedient approach.

57




If both bridges are modeled, care should be exercised in depicting
the expansion of flow between the bridges.
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Appendix 11
NORMAL BRIDGE EXAMPLE

COMPUTER RUN
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COMPUTER RUN
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